Dynamic viscosity measurement in non-Newtonian graphite nanofluids
نویسندگان
چکیده
: The effective dynamic viscosity was measured in the graphite water-based nanofluids. The shear thinning non-Newtonian behavior is observed in the measurement. On the basis of the best fitting of the experimental data, the viscosity at zero shear rate or at infinite shear rate is determined for each of the fluids. It is found that increases of the particle volume concentration and the holding time period of the nanofluids result in an enhancement of the effective dynamic viscosity. The maximum enhancement of the effective dynamic viscosity at infinite rate of shear is more than 24 times in the nanofluids held for 3 days with the volume concentration of 4% in comparison with the base fluid. A transmission electron microscope is applied to reveal the morphology of aggregated nanoparticles qualitatively. The large and irregular aggregation of the particles is found in the 3-day fluids in the drying samples. The Raman spectra are extended to characterize the D and G peaks of the graphite structure in the nanofluids. The increasing intensity of the D peak indicates the nanoparticle aggregation growing with the higher concentration and the longer holding time of the nanofluids. The experimental results suggest that the increase on effective dynamic viscosity of nanofluids is related to the graphite nanoparticle aggregation in the fluids.
منابع مشابه
An experimental investigation of rheological characteristics of non- Newtonian nanofluids
Rheological characteristics of Al2O3, CuO and TiO2 nano particles were investigated in oil asthe base fluid at 1 and 2 wt.%. Constitutive relations for non-Newtonian fluid were discussedbased on the power-law model. Measured viscosities of each nanofluid were used to evaluatethe power-law and consistency index. Results indicated that the nanofluid viscosity decreasedby increasing the concentrat...
متن کاملViscosity affected by nanoparticle aggregation in Al2O3-water nanofluids
An investigation on viscosity was conducted 2 weeks after the Al2O3-water nanofluids having dispersants were prepared at the volume concentration of 1-5%. The shear stress was observed with a non-Newtonian behavior. On further ultrasonic agitation treatment, the nanofluids resumed as a Newtonian fluids. The relative viscosity increases as the volume concentrations increases. At 5% volume concen...
متن کاملExperimental measurement of dynamic viscosity of CeO2-EG at different concentrations and temperatures and proposing a new correlation
Nanofluid is prepared through the nanoscale particles suspended in a fluid base and Nanotechnology is a new attempt to investigate the thermal sciences. As a result of huge investment in developed countries on nanotechnology, research on thermal properties of nano-fluids is of particular interest.Due to the usage of nanotechnology to reduce energy waste, in this project CeO2 with EG is used to ...
متن کاملRheological non-Newtonian behaviour of ethylene glycol-based Fe2O3 nanofluids
The rheological behaviour of ethylene glycol-based nanofluids containing hexagonal scalenohedral-shaped α-Fe2O3 (hematite) nanoparticles at 303.15 K and particle weight concentrations up to 25% has been carried out using a cone-plate Physica MCR rheometer. The tests performed show that the studied nanofluids present non-Newtonian shear-thinning behaviour. In addition, the viscosity at a given s...
متن کاملLanthania Colloidal Nanoparticles: Hydrothermal Synthesis, Structural, and Rheological Properties
In this work, for the first time, the rheological properties of nanofluids of lanthania nanoparticles (NPs) in ethylene glycol (EG) as functions of shear rate, volume fraction, and temperature were measured. The results showed that both EG and the nanofluids behave as non-Newtonian fluids at lower shear rates and transform to Newtonian fluids at higher shear rates. The values of viscosity ...
متن کامل